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Frontier Medicine’s Druggability AtlasTM 
has identified >150,000 cysteine hotspots for 
covalent modification enabling access to >90% 
of the human proteome for drug discovery

Figure 5: We applied our model to Frontier’s hotspot database to 
calculate Activation Scores across the human proteome. To evaluate 
the model quantitatively, we partitioned the cysteines into quartiles 
utilizing the Activation Score: Q4 represents cysteines with the highest 
scores (> 0.75), and Q1 represents cysteines with the lowest scores 
(< 0.2). We utilized our chemoproteomic proteome-wide covalent 
library profiling to validate whether cysteines with high Activation 
Scores also demonstrated experimental reactivities. We also 
compared the Activation Score to physicochemical properties that 
confer reactivity (SASA, and pKa)

a. Pictured are the crystal structures of one drugged (JAK3) 
and two hard-to-drug (KRAS and WRN) proteins. Displayed 
are cysteines from Frontier’s Druggability AtlasTM and their 
associated Activation Scores.

b. Boxplot depicting the max % bound by a covalent fragment for 
each cysteine derived from our proteome-wide covalent library 
profiling experiments. Percent bound is calculated from the 
competition of covalent fragments and DMSO [5]; the more 
potent reactions will have a higher % bound because the covalent 
fragment outcompetes DMSO for the cysteine binding site. 

c. Barchart displaying the frequency of significant covalent 
fragment-cysteine reactions (hits) compared to the total number 
of covalent fragment-cysteine reactions.

d. Boxplot depicting the distribution of cysteine’s Solvent Accessible 
Surface Area (SASA). A greater SASA means the cysteine is more 
surface accessible.

e. Boxplot depicting the distribution of cysteine’s predicted pKa 
(acid dissociation constant). The pKa predictions were obtained 
from Schrodinger Epik [6], where a lower pKa denotes a cysteine 
that is more susceptible to oxidation.

Background

Figure 1: A TSNE projection was created from the canonical human proteome using PLM 
embeddings. Each dot represents a protein: Frontier’s coverage of the human proteome 
is highlighted in pink and purple, whereas black dots are proteins that could be covered 
in the future.
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Figure 4: We trained several di�erent ML models to classify reactive from unreactive cysteines using a feature set that included embeddings derived from a residue-level PLM and metadata 
from proprietary MS/MS spectra data derived from conducting thousands of isoTOP-ABPP [4] experiments. These MS/MS spectra data provide us with measures of reproducibility of 
modification, and abundance of peptide which can be used in our model. Among the tested ML models, we found that XGBoost had the highest performance classifying reactive from 
unreactive cysteines (AUC = 0.81). The Activation Score is the probability that a cysteine is classified as reactive by our machine learning model. 
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The Activation Score: Predicting cysteine reactivity from chemoproteomics 
data and protein language model (PLM) embeddings

Harnessing chemoproteomics to characterize reactive cysteines

Protein language model embeddings capture important 
biophysical, structural, and functional properties of residues

Figure 3: Frontier’s proprietary language model incorporates an evolutionary scale model (ESM2) and an inverse folding model (ESM-IF1) [2,3]. Evolutionary Scale Modeling (ESM2) is a 
type of PLM that uses uniref50 sequence DB as training data. ESM-IF1 is an inverse folding model that utilizes Alphafold protein structures to predict the protein sequence from its backbone 
atom coordinates. The model produces an embedding which is a pretrained descriptor that simultaneously takes as input both primary and tertiary protein structure, thus encoding both 
structural (Alphafold) and sequential information about the protein. We applied the model to Frontier’s Druggability AtlasTM and generated embeddings from the canonical human 
proteome.

Methods
• IAA dose response samples were prepped for MS analysis utilizing Tandem Mass Tag (TMT) multiplexed quantification and then run on a Thermo Orbitrap Eclipse mass spectrometer. 

The resulting MS data were searched using the open-source Comet algorithm [7] using the informatics pipeline described in [5].

• We imported the ESM2 and ESM1 models from the esm python package [8]. We then fed the models the pdb structures from the canonical human proteome Alphafold V2 release [9] 
to calculate embeddings for every protein.

• We tested the performance of XGBoost, Neural Net, Logistic Regression, Naïve Bayes, Random Forest, Decision Tree, and K-Nearest Neighbors classification models from the xgboost [10], 
tensorflow [11], and scikit-learn [12] packages in Python. We utilized Synthetic Minority Oversampling Technique (SMOTE) from the imblearn package [13] to correct class imbalance within 
our training set. 

• The figures were created with BioRender https:⁄ ⁄www.biorender.com⁄

Conclusions
• We developed the Activation Score, a ML⁄AI-based model to rank-prioritize chemically reactive cysteines within 

a protein or across the proteome. 

• Cysteine reactivity can be predicted by leveraging chemoproteomics data with PLM embeddings in an algorithmic 
approach. 

• The Activation Score is highly correlated with physicochemical properties such as SASA and pKa, but key 
differences exist.

• Cysteines with a higher Activation Score demonstrate more frequent and more notable engagement in Frontier's 
proteome wide covalent library profiling experiments.

• The Activation Score nominates cysteines with reactive potential across the proteome including proteins that are hard to 
drug but important for disease (such KRAS and WRN).

• The Activation Score is incorporated into Frontier’s Druggability AtlasTM and presents a powerful tool for prioritizing 
cysteines for covalent drug discovery.

The Activation Score is a validated and powerful tool for 
prioritizing cysteines for covalent drug discovery 

Figure 2: Eight cancer cell lines were treated with sulfhydryl-reactive alkylating Iodoacetamide (IAA) at 7 di�erent concentrations (ranging from 0 to 1,000 µM) to block reduced cysteine 
residues for peptide mapping. A competition reaction between IAA and a cysteine-binding desthiobiotin Iodoacetamide (DBIA) chemical probe enabled enrichment of DBIA-labeled 
peptides in a dose-responsive manner. The samples were prepped and run on a mass spectrometer (MS) where loss of peptide signal indicated successful IAA-competition. We fit 
a four-parameter log-logistic model to the dose response data for each cysteine. When the model converged on a solution (there was a dose response) we labelled the cysteine as 
reactive, when there was no dose response, we labelled it as unreactive.
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• Covalent drugs have been used to treat disease for 
over a century [1], but the streamlined discovery 
and design of covalent drugs starting from a 
fragment is a new and promising field. Covalent 
drugs bind irreversibly or reversibly and can 
affect a protein’s activity or stability. The covalent 
approach provides an advantage when targeting 
"undruggable" proteins with poorly defined pockets 
or disordered domains, providing an anchor point 
to build potent and selective drugs. 

• Due to its pKa range, cysteine is the preferred 
residue for covalent modification, thus there is 
great interest in targeting these residues for 
drug-discovery. Chemoproteomics is an approach 
to understand the interaction between small 
molecules and proteins in a cellular context. 
The FrontierTM Platform is built using 
chemoproteomics to enable the rapid 
and proteome-wide discovery of druggable 
cysteines.

• Here we present Frontier’s Activation Score: 
a machine learning (ML)-based score derived 
from training on Frontier’s vast chemoproteomics 
dataset. The Activation Score enables us to 
rank-prioritize chemically reactive cysteines across 
the proteome informing drug discovery strategy 
and accelerating covalent drug discovery.

The Activation Score model combines chemoproteomics with 
protein language model embeddings to predict cysteine reactivity
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